
Mandatory Access Control in PostgreSQL -
giving users ownership of their data

Leon du Toit

2019-01-15

Outline

I why take data ownership seriously?
I why Mandatory Access Control?
I a brief introduction to the pg-need-to-know module
I a use case to demostrate features:

I For users: ownership, insight and consent-based usage
I For administrators: fine-grained access control, audit

information
I For developers: a rich REST API, with a built-in authorization

model
I optionally: a look at some implementation details

Why take data ownership seriously?

I Regulations of the GDPR
I increased focus on data privacy and protection
I right to access
I right to be forgotten
I data portability
I consent-based data usage
I increased demand for audit information

I Respecting people

https://eugdpr.org/the-regulation/

Why Mandatory Access Control?

I enforcible policies, in constrast to Discretionary Access Control
I enables consent-based data access
I supports granular access needs

pg-need-to-know

I PostgreSQL “module” - really just a set of tables, views, and
functions

I implements Mandatory Access Control
I more limited approach than SEPostgreSQL
I source: https://github.com/leondutoit/pg-need-to-know
I written in PL/pgSQL

I procedural language, extending SQL with control structures
I used to create functions
I ~1000 sloc, another ~1500 for tests

I uses Row-Level Security policies to implement MAC
I designed to be used via a REST API

https://wiki.postgresql.org/wiki/SEPostgreSQL_SELinux_Overview
https://www.postgresql.org/docs/current/plpgsql-overview.html

Row-Level Security

I Row-Level Security introduced in PostgreSQL 9.5
I policy expression evaluated during SQL query execution, for

each row
I can use row values as input to functions or expressions

specified in the policy
I if true then row returned, if false then not

https://www.postgresql.org/docs/current/static/ddl-rowsecurity.html

Security policies

CREATE POLICY:

CREATE POLICY name ON table_name
[AS { PERMISSIVE | RESTRICTIVE }]
[FOR { ALL | SELECT | INSERT | UPDATE | DELETE }]
[TO { role_name | PUBLIC | CURRENT_USER | SESSION_USER }]
[USING (using_expression)]
[WITH CHECK (check_expression)]

https://www.postgresql.org/docs/11/sql-createpolicy.html

Use case

Key terms:

I data owner: provides data about themselves
I data user: analyses data about others
I admin: creates access control policies

Use case

Assume the following setup:

I data owners: A, B, C, D, E, F
I data users: X, Y, Z
I tables: spending_habits, personal_details, containing data

from all data owners

Use case

Now suppose we need to set up the following access control rules in
our DB:

I data users X, and Y should only have access to data in table
spending_habits and only data from owners A, B, C, D

I data user Z should have access to all data - i.e. tables
spending_habits, personal_details

Use case

A hypothetical sequence of events using pg-need-to-know:

1. admin creates tables
2. data owners and data users register themselves, data is

collected
3. admin creates groups, adds members, adds table grants
4. data is analysed
5. users manage their own data
6. admins get audit insights
7. developers create applications using these features

Table creation

Figure 1:Creating a new table

User registration

I can require consent before user registration
I data collection not possible without registration

Group setup, table grants

I can link consent(s) to groups via group metadata
I group1

I members: ((X, Y), (A, B, C, D))
I select table access grant: (spending_habits)

I group2
I members: ((Z), (A, B, C, D, E, F))
I select table access grants: (spending_habits, personal_details)

Data analysis

Figure 2:User X’s data access

Data analysis

Figure 3:User Z’s data access

Data ownership

I right to access
I data portability
I right to be forgotten

Right to access

Figure 4:Owner A’s data access

Data portability

I owner A can simply download their data

Right to be forgotten

Figure 5:Owner B deletes their data

Audit insights

I data access
I access control changes
I user initiated group removals
I user initiated data deletions
I data updates

Audit: data access

Figure 6:Data access audit logs

Audit: access control changes

Figure 7:Access control audit logs

Audit: user initiated group removals

Figure 8:User group removals audit logs

Audit: user initiated data deletions

Figure 9:User data deletion audit logs

Audit: data updates

Figure 10:Data update audit logs

Application development

Architecture:

webapp -> REST -> (pg-need-to-know, PostgresQL)

I developers can focus on business logic
I authorization taken care of
I authentication is left to the webapp implementor

postgrest

I pg-need-to-know designed to be used with postgrest
I open source project written in Haskell
I provides a REST API for any PostgreSQL DB
I https://github.com/leondutoit/pg-need-to-

know/blob/master/api/http-api.md
I pg-need-to-know requires a custom compilation of this server

due to audit logging
I available here:

https://github.com/leondutoit/postgrest-need-to-know

http://postgrest.org/en/v5.2/

Authentication requirements

I webapp must provide an access token at request time
I a JWT with the following claims:

I exp: expiry time
I role: <data_owner, data_user, admin_user>
I user: user name

I pg-need-to-know provides a /token endpoint for access
token generation

I but developers can implement their own
I refernce client for HTTP API:

https://github.com/leondutoit/py-need-to-know

Implementation details

Figure 11:Example table definition

More info

I watch a demo recording:
https://asciinema.org/a/c3XIyrfnoLixofqiSbx8p0l21

I read the docs: https://github.com/leondutoit/pg-need-to-
know/tree/master/docs

I this presentation, and materials:
https://github.com/leondutoit/pg-ntk-demo

