
1

Introduction to Model-driven Software
Development and Verification

Lionel C. Briand

Simula Research Laboratory

and

University of Oslo

© Lionel Briand

Models in Traditional Engineering

• As old as

engineering

(e.g., Vitruvius)

• Traditional

means of

reducing

engineering

risk

Slide provided by B. Selic

2

© Lionel Briand

Models in Traditional Engineering

Models used in all branches of engineering

Slide provided by B. Selic

© Lionel Briand

What is a model

• Some definitions:

– A simplified representation used to explain the workings

of a real world system or event.

– A reduced/abstract representation of some system that
highlights the properties of interest from a given

viewpoint. The viewpoint defines concern, scope and

detail level of the model.

•Functional model •Modeled system

•Inspired from B. Selic presentation during Summer School
MDD For DRES 2004 (Brest, September 2004)

Slide provided by B. Selic

3

© Lionel Briand

Characteristics of useful models

• Abstract

– Emphasize important aspects while removing irrelevant ones

• Understandable

– Expressed in a form that is readily understood by observers

• Accurate

– Faithfully represents the modeled system

• Predictive

– Can be used to answer questions about the modeled system

• Inexpensive

– Much cheaper to construct and study than the modeled system

 To be useful, engineering models must satisfy all of
these characteristics!

© Lionel Briand

Models in Software Engineering

• Not yet part of common practice

• “Software can be easily changed”

• A great deal of academic research, limited
practice

• An emerging international standard (OMG): the
Unified Modeling Language, Model Driven
Architecture

• A quickly growing set of extensions and
supporting technologies

• E.g., Automotive and aerospace industries

4

© Lionel Briand

Example Model: State Machine

off

power-on/

light-on; m:=0

power-off/

light-off

not

empty
empty

inc/m:=1

dec[m=1]/m:=0

inc/m:=m+1

dec[m>1]/m:=m-1

money

busy idle

coffee

on

coffee[m>0]/start

after(5)/stop

coffee[m>0]/start;dec

© Lionel Briand

enum State {Locked, Unlocked};

enum Event {Pass, Coin};

void Unlock();

void Lock();

void Thankyou();

void Alarm();

void Transition(Event e)

{

 static State s = Locked;

 switch(s)

 {

 case Locked:

 switch(e)

 {

 case Coin:

 s = Unlocked;

 Unlock();

 break;

 case Pass:

 Alarm();

 break;

}

 break;

 case Unlocked:

 switch(e)

 {

 case Coin:

 Thankyou();

 break;

 case Pass:

 s = Locked;

 Lock();

 break;

 }

 break;

 }

}

Abstraction?

5

© Lionel Briand

Generate Code with State Pattern

© Lionel Briand

Example Models

• States of a system

• Behavior of a system (events, actions)

• Structure of a system, at different levels of
abstraction: components, dependencies

• Logical constraints and properties

• Non-functional properties, e.g., response
time, safety

6

© Lionel Briand

Goals of Model Driven Software
Development (1)

• Increase development speed

– models are faster to develop and test, as they are at a higher level
of abstraction than code

– code is automatically generated from formal models using one or
more well-defined transformation steps

• Enhance software quality

– due to use of formally-defined modeling languages and automated
transformations

– however, the quality of the transformation has a strong impact on
the quality of the final product

• Higher level of reusability

– separates better reusable code from application-dependent code

– reuses templates for generating application-dependent code

© Lionel Briand

Goals of MDSD (2)

• Improve manageability of complexity through abstraction

– abstract the problem to focus on some particular points of interest

– possible to have a set of nearly independent model views

– iterative modeling may be expressed at different level of fidelity

• Minimize development risks

– Through analysis and experimentation performed earlier in the
design cycle

– Enable to investigate and compare alternative solutions

• Improve communication between stakeholders:

– foster information sharing and reuse

– A model is often better suited than a long speech

7

© Lionel Briand

General challenges

• What should we model?

• At what level of detail to model?

• How to exploit/analyze such models?

• What is the cost-benefit of modeling?

© Lionel Briand

Application of Modeling

Models

Communication and knowledge sharing

Source code generation and system evolution

System architecture and design analysis

System verification and validation

8

© Lionel Briand

The Object Management Group
(OMG)

• An open membership and non-profit

consortium

• Produces and maintains computer

industry specifications for

interoperable enterprise applications

© Lionel Briand

OMG’s Milestones

1989

1991

1996

1997

2001

9

© Lionel Briand

Requirements

 Capture

System

 Structure

System Behaviour

Use Case Diagrams

+ structured textual description

Sequence Diagrams (+OCL)

Activity Diagrams (+OCL)

State Machines (+OCL)

Class Diagrams (+OCL)

Communication Diagrams (+OCL)

OMG’s Unified Modeling Language
(UML)

© Lionel Briand

Status: UML 2.0, SysML, profiles

• Compared to UML 1.x, UML 2.0 adds useful
features for systems engineering, large scale
modeling

• Many “profiles” specialize the UML for specific
purposes, e.g., SPT/MARTE for real-time,
concurrent systems.

• SysML: Address system engineering
requirements (e.g., mechatronics)

• Many commercial modeling tools (e.g.,
Rational Software Architect, Magicdraw)

• Even an open source UML tools (e.g., Papyrus,
TopCased)

10

© Lionel Briand

UML 2.0

Class

 Diagram

Composite
 Structure
 Diagram

Component

 Diagram

Object

 Diagram

Deployment

 Diagram

Package

 Diagram

Structure

 Diagram

Diagram

Activity

 Diagram
Use Cases

 Diagram

Behaviour

 Diagram

Interaction

 Diagram

State
 Machine
 Diagram

Sequence

 Diagram

Interaction
 Overview
 Diagram

Communication

 Diagram

Timing
 Diagram

© Lionel Briand

Use Case Diagram

open_account

withdraw_cash

loan_application

clear_checks

get_report

Customer

Manager

Loan Officer

Clerk

Cash Dispenser

11

© Lionel Briand

CarMatch System

© Lionel Briand

Class Diagram

Customer Product

stock_level
ID

buys

Print_out_Detail

name
cost

Non_Discrete_Product

price_per_gram

Discrete_Product

price_per_item

Database

stores

Laser Reader Scales

Beeper

grams

Perishable_Product

sell_by_date

Central
Control
Point

is_warned_about

activates

weighs identifies

activates

{disjoint, complete} {disjoint, incomplete}

1 1..*

0..* 1

1

1

0..* 0..* 0..*

1

0..1

0..1

0..1
0..1

12

© Lionel Briand

Company

1

Office

address: String

voice: Number

1..*

Department

name: Name

*

0..1

1..*

HeadQuarters member 1..*

*

manager 1

*

{subset}

Person

name: String

title: String

getPhoto(): Photo

getContractInfo()

getPersonalRecords()

location

* *

PersonalRecord

employmentHistory

salary

ContractInfo

address: String

ISecureInfo

© Lionel Briand

State machine diagram

DialTone

do / play dial tone

Timeout

do / play message

Dialing

Connecting

Talking

Pinned

Invalid

do / play message

Busy

do / play busy tone

Ringing

do / play ringing tone

callee
hangs up

callee
answers connected

busy

dial digit (n)
[valid]
/connect

dial digit (n)
[invalid]

dial digit (n)

dial digit(n)
[incomplete]

15 sec
15 sec

Active

phone#

Idle

caller
hangs up
/disconnect

lift receiver
/get dialedtone

13

© Lionel Briand

Top-Level Statechart for ATM
Control Class

•Processing Customer Input •Terminating
•Transaction

•Entry / Display
•System Down
•Close Down

•Entry / Display
•Welcome

•Idle

•Processing Transaction

•Closedown •Startup

•Card Inserted / Get PIN •After (Elapsed Time)
•[Closedown Not Requested]

•Third Invalid, Stolen / Confiscated, Update Status
•Cancel / Eject, Display Cancel

•Transfer Selected /
•Request Transfer, Display Wait
•Query Selected /

•Request Query, Display Wait
•Withdrawal Selected /

•Request Withdrawal, Display Wait

•Rejected /
•Eject, Display Apology

•Transfer OK /
•Print Receipt, Update Status

•Query OK /
•Print Receipt, Update Status

•Withdrawal OK /
•Dispense Cash, Update Status

•Insufficient Cash / Eject
•After (Elapsed Time)

•[Closedown Was Requested]

© Lionel Briand

Sequence Diagram

ob3:C3 ob4:C4

ob2:C2

ob1:C1
op()

[x>0] foo(x)

[x<0] bar(x)

more()

doit(z)
doit(w)

14

© Lionel Briand

Corrected: Refund Membership
Fee

•sd •Refund Membership Fee

•loop •[j != null]
•alt

•CarMatch
•Administartor •:RefundBoundary •:RefundControl •c:CarSharer •j:Journey •ac:Accounts

•refundRequest(id, delOpt)
•refundRequest(id, delOpt)

•c = findByID(id)
•j = getFirstJourney()

•[delOpt]
•ref

• Delete Journey
•ref

• Set Journey to Defunct
•[else]

•j = getNextJourney()

•ac = getAccount()
•issueRefund(amt)

•<<metaclass>>
•CarSharer

© Lionel Briand

Communication Diagram
b : Bill

p : POS_Controller

product_information (p :
Product, level : Integer)

[discrete] 6: price = get_item_price() : Integer

d : Display

 Interface

13: update_total (t : Integer)

p : Product

c : CCP_Interface

[non-discrete] 9: price = get_gram_price() : Integer

[non-discrete] 10:
grams = get_weight() : Integer

3: d = get_details() : Print_Out_Details

[perishable and expired]
2: product_expired()

5: print_details
(d : Print_Out_Details)

[perishable] 1: sell_by = get_sell_by_date() : Integer

s : Scales_Interface [expired] 2: product_expired (p : Product)

[discrete] 8: check_stock (CCP : CCP_Interface, level : Integer)

8.1: stock_low
 (ID : Integer)

4: add_details (d: Print_out_Details)

[discrete] 7: add_to_total (price : integer)

12: t = get_total()

[nondiscrete] 11: add_to_total (x : integer)

15

© Lionel Briand

Request product

Process Order Continue Work

Pull Materials

Ship Order

Receive Order Bill Customer

Pay Bill

Close Order

Customer Sales Warehouse

Activity Diagram

© Lionel Briand

Misconceptions about UML

• Not a “universal” language: “unified”

• Common core of good practices

• Can (should) use an adequate subset

• Extensible (Profiles) in a way that is

supported by tools

• Modeling can take place at different

levels of detail and rigor: choice of

method

16

© Lionel Briand

OMG’s Model Driven Architecture
(MDA)

• OMG’s MDD standard:

– Unified Modeling Language (UML) – for expressing software models

– Meta-Object Facility (MOF) – for describing metamodels

– MOF-Query/View/Transformation (QVT) – for expressing model
transformations

– XML Metadata Interchange (XMI) – for exchanging metadata expressed in
XML

– Common Warehouse Metamodel (CWM) – for modeling metadata for
databases

• Separates the model of the system domain and functionality from the

model of the implementation of that functionality on a specific platform.

• middleware (J2EE, CORBA)

• operating system (Linux, Windows, etc.)

• Hardware

• Model: Describes function, structure, and/or behavior of a system

(UML)

• Platform Independent Models (PIM), Platform Specific Models (PSM)

© Lionel Briand

Transformations

• PSMs generated

from PIMs

• Source code

generated from

PSMs

• Automated

transformations

PIM

PSM (1)

eg. EJB

PSM (2)

eg. .NET

System Code

 EJB

System Code

 .NET

17

© Lionel Briand

Example Transformation

PIM

PSM

© Lionel Briand

Four Layer Modeling Framework

1. Meta-Object Facility

(MOF)

2. (UML) Metamodel

3. (UML) model

4. Data / Instances

BMW
W-1234

UML Class

MOF Class

instance of

instance of

M0: Objects/Data

instance of

M1: Metadata
Model

M2: Metametadata
Metamodel

M3: Metametametadata
MetaMeta-Model

ID: string

Type: string

Car

18

© Lionel Briand

UML Metamodel

Taken from OMG UML2 Superstructure, Figure 30

© Lionel Briand

Examples of Reported Experiences

• Motorola:
– Top down approach with SDL and then UML for 15 years

– Code generation

– 1.2X–4X overall reduction in defects and a 3X improvement in
“phase containment of defects”, 2X–8X fold in productivity
improvement

– Decrease in inspection and testing times, e.g., 33% reduction in
the effort required to develop test cases

• ABB
– Interviews and questionnaires were used to identify costs

and benefits of introducing UML in a large safety-critical
project.

– Design was improved: greater focus and care on design

– Documentation was improved: more unified structure,
many preferred diagrams to text

19

Overview of Model-Based
Software Testing

© Lionel Briand

Testing Software Systems

• Short definition: Systematic, controlled system

execution and verification of results (outputs,

system state)

• Goals of testing:

– Effective at uncovering faults

– Help locate faults for debugging

– Repeatable so that a precise understanding of the
fault can be gained and to determine whether it was
successfully corrected

– Automated so as to lower the cost and timescale

– Systematic so as to be predictable in terms of its
effect on dependability

20

© Lionel Briand

Testing Dimensions

unit

integration

system

performance
robustness

functional
 behaviour

white box black box

Level

Accessibility

Target

usability

reliability

module

stress

© Lionel Briand

Test Automation

• Testers are often perceived as bottlenecks to
the delivery of software products. They are
being asked to test more and more code in less
and less time.

• Test automation is the use of software to
control the execution of tests, the comparison
of actual outcomes to predicted outcomes, the
setting up of test preconditions, and other test
control and test reporting functions.

• Model-based testing (MBT) is a way to achieve
effective test automation

21

© Lionel Briand

Tasks to Automate

• Test design: selection of test cases to cover
requirements of SUT

• Test execution: manual entry of test cases
and associated data

• Test coverage: manual analysis to check if
all combinations of logic tested

• Test results analysis: manual analysis to
check if actual outputs/outcomes match
expected ones

© Lionel Briand

Test Case Generation and Execution

Test cases

SW Model

SW Code

Test cases

Compare Oracle

Expected

Results

Results

What modeling
and test strategy?

What code coverage
analysis?

What oracle strategy?

Specifications or designs
 in UML

Control and data flow
 analysis

Application
Domain specific

22

© Lionel Briand

Adequacy Criteria on Test Models

Model: State Machine

Test Cases

Adequacy / Coverage Criteria
Test cases must cover

all the transitions,

round trip paths, …

In this context:

• Complex class clusters are commonly described with state machines

during OO analysis & design

• Test models (paths) are derived from state machines

• Test cases are method call sequences on classes (clusters).

© Lionel Briand

MBT Definition

• “Model-based testing is a testing technique where the runtime

behavior of an implementation under test is checked against
predictions made by a formal specification, or model.” - Colin

Campbell, Microsoft Research

• Model-based testing is software testing in which test cases are

derived in whole or in part from a model that describes some

(usually functional) aspects of the system under test (SUT). -
Wikipedia

23

© Lionel Briand

Models in Software Testing

• Finite State Machines

• Statecharts

• Markov Chains

• Grammars

• Cause-effect graphs

• No models fit all intents and purposes. Consequently, for
each situation decisions need to be made as to what
model (or collection of models) are most suitable.

• Unified Modeling Language (UML): Testing Profile

© Lionel Briand

Example with State Machine

off

power-on/

light-on; m:=0

power-off/

light-off

not

empty
empty

inc/m:=1

dec[m=1]/m:=0

inc/m:=m+1

dec[m>1]/m:=m-1

money

busy idle

coffee

on

coffee[m>0]/start

after(5)/stop

coffee[m>0]/start;dec

24

© Lionel Briand

State coverage

off

power-on/

light-on; m:=0

power-off/

light-off

not

empty
empty

inc/m:=1

dec[m=1]/m:=0

inc/m:=m+1

dec[m>1]/m:=m-1

money

busy idle

coffee

on

coffee[m>0]/start

after(5)/stop

coffee[m>0]/start;dec

© Lionel Briand

Transition coverage

off

power-on/

light-on; m:=0

power-off/

light-off

not

empty
empty

inc/m:=1

dec[m=1]/m:=0

inc/m:=m+1

dec[m>1]/m:=m-1

money

busy idle

coffee

on

coffee[m>0]/start

After(5)stop

coffee[m>0]/start;dec

25

© Lionel Briand

Process of MBT

El-Far and Whittaker, 2001

© Lionel Briand

MBT Benefits

• Comprehensive tests: models determine logical paths, locations of
program boundaries, help identify reachability problems

• Defect discovery: studies suggest model-based testing results in early
and efficient defect detection, significant Return On Investment

• Improved requirements: testable requirement has to be complete,
consistent, unambiguous; testing may expose “feature interaction”
requirement defects

• A model serves as a unifying point of reference that all teams and
individuals involved in the development process can share, reuse, and
benefit from. For example, confusion as to whether the system under
test needs to satisfy a particular requirement can be resolved by
examining the model.

• Most popular models have a rich theoretical background that makes
numerous tasks such as generating large suites of test cases easy to
automate. For example, graph theory readily solves automated test
generation for finite state machine models.

26

© Lionel Briand

51

NOKIA Study

• KENDO tool, based on finite state machines

• Models created from scratch or from UI specifications

• 100% transition coverage with Chinese postman
algorithm

• Test cases executed on real device or emulator

• On two applications (Image viewer, voice recorder)

• 1000 man-hours would be saved yearly compared to
manual testing

• Even more savings would be expected if GUI
specification were more precise and formal as a basis for
(test) models

© Lionel Briand

BMW Study

• Pretschner et al. 2005

• SUT: Network controller

• Dev. Model: Informal MSCs

• AutoFocus modeling: System structure diagrams,
EFSMs were the test models

• MBT increased detected requirements errors sixfold and
detected programming errors by 30% .

• Automation does not increase test effectiveness.

• Model and implementation coverages correlate
moderately.

27

© Lionel Briand

MBT Challenges: Technical

UML State Machines &
Round-trip paths

Specification/Design
Model and Test Strategy

Transition TreeTest
Model

Event SequencesTest Specifications
(abstract test cases)

Sequences of
method callsTest Cases / Drivers

•Scalable, automated model transformation?
•Reasonable modeling requirements?

•Coverage strategy
•Algorithms: scalable, limitations

•Abstraction gap
•Automation
•Oracle

© Lionel Briand

MBT Challenges: Practical

• Skills, time, and other resources need to be allocated for
making preparations, overcoming common difficulties,
and working around the major MBT drawbacks.

• This overhead needs to be weighed against potential
rewards in order to determine whether a model-based
technique is sensible to the task at hand.

• Certain skills of testers (basic familiarity with formal
languages, automata theory, and perhaps graph theory
and elementary statistics).

• The most prominent problem for state models (and most
other similar models) is state space explosion. Briefly,
models of almost any non-trivial software functionality
can grow beyond management even with tool support.

28

© Lionel Briand

Industrial Research at Simula

• Problem-driven research on large scale,

complex software-based systems

• Risk-driven testing at Telenor

• Robustness and stress testing at Tandberg

• State modeling and testing at ABB

• Safety analysis and testing at DNV

Thank you!

29

© Lionel Briand

Acknowledgments

• Bran Selic

• Dorina Petriu

• Davide Buscali

• Johann Oberleitner

