ERLANG

Functional Programming in industry

Leslaw Lopacki
leslaw@lopacki.net

Courtesy of Urban Boquist and Christer Nilsson (Ericsson Gothenburg)

Outline

Mobile Telecommunications Networks
Packet Core Network — GPRS, UMITS & SGSN
Use of Erlang in SGSN
SGSN' Design Principles for Erlang:
concurrency
distribution
fault tolerance
overload protection
runtime code replacement
Erlang basics and examples

Mobile Telecommunications
Networks - GSM

Services In telecommunications networks:

CS — circuit switched PS — packet switched

voice everything that is “IP”
SMS wap / www

email
MMS

GPRS - General Packet Radio Service

Packet Core Network

Radio Network Packet Core Network

[
=
Z
:

Figure: User Plane through the GSM network

» GSN (GPRS Support Network) nodes:
SGSN — Serving GSN
GGSN — Gateway GSN
» Basic throughput:
Up to 115 kbps with GPRS
Up to 240 kbps with EDGE — Enhanced Data Rates for GSM! Evolution

PCN in "3G" and “Turbo-3G" —
WCDMA and HSDPA

Different Radio Network

Packet Core Network (almost) the same as the one in GPRS
Ericsson SGSN' is “dual access™ — GPRS and WCDMA in one
Much: higher (end user) speeds:

Up to 384 kbps for 3G (WCDMA)
Up to 14.4 Mbps for HSDPA (later up to 42 Mbit — Evolved HSPA)

Voice / video calls are still CS!

Streaming video is PS
(TV == MBMS — Multimedia/ Broadcast Multicast Service)

Future: voice / video in PS
“\oice-over-IP”

Ericsson SGSN Node

Capacity
~ 50 k subscribers, 2000
~ 100 k subscribers, 2002
~ 500 k subscribers, 2004
~ 1 M subscribers, 2005
~ 2 M subscribers, 2008

SGSN — Basic Services

Control Signalling Payload transport
authentication » user traffic

admission control » charging
quality of service

mobility
roaming

SGSN! Architecture

soft real time

Control Plane

hard real time

Payload Plane

Internet

SGSN Hardware

~ 20-30 Control Processors (boards):
UltraSPARC or PowerPC CPUs
2 GB memory.
Solaris/Linux + Erlang / C / C4++

~ 20-30 Payload Processors (boards):

PowerPC CPUs

Special hardware (FPGAs) for encryption
Physical devices: frame relay, atm, ...
VxWorks + C / C++

Backplane: 1 Gbit Ethernet

SGSN Control Signalling

attach (phone is turned on)

Israu (routing area update, mobility in radio network)
activation (initiate payload traffic)

etc. [hundreds of signals]

Telecom standards are HUGE (see www.3gpp.orq)!

We need a high level language — concentrate on
GPRS, not on programming details!

Erlang/OTP

Invented at Ericsson Computer Science Labi in the 1980s.
Intended for large scale reliable telecom systems.

Erlang is:
functionall language
with built-in support for concurrency

OTP (Open Telecom Platform)
== Erlang + lots off libraries.

Why Erlang?

Good things in Erlang:
built-in concurrency: (processes and message passing)
built-in distribution
built-in fault-tolerance
support for runtime code replacement:

a dynamic language
a dynamically typed language

This is exactly what is needed to build a robust Control Plane in a
telecom system!

In SGSN;
Control Plane Software is not time critical (Erlang)
User Plane (payload) is time critical (C)

Erlang — Concurrency.

“Normal™ synchronization primitives - semaphores or monitors

does not look the same in Erlang

instead everything is done with processes and message passing.
Mutual exclusion:

use a single process to handle resource

clients call process to get access.
Critical sections:

allow only one process to execute section

Erlang - Distribution

General rule in SGSN:
avoid remote communication or synchronization If possible
Design algorithms that work independently on each node:
fault tolerance
load! balancing

Avoid relying on global resources
Data handling:

keep as much locally as possible (typically traffic data associated
with mobile phones)

some data must be distributed / shared (e.g. using mnesia)
many different variants of persistency, redundancy, replication

Fault Tolerance

SGSN must never be out-of-service! (99.999%)
Hardware fault tolerance
Faulty boards are automatically taken out of service
Mobile phones automatically redistributed
Software fault tolerance

SW. error triggered by one phone should not affect others!

Serious error in “system SW” should affect at most the phones
handled by that board (not the whole node)

How can such requirements be realized?

Example: the SW handling one phone goes crazy and overwrites all the
memory with garbage.

SGSN Architecture — Control Plane

CP CP CP

» On each CP = 100 processes providing “system; services”
“static workers”

» On each CP = 50.000 processes each handling one phone
“dynamic workers”

Dynamic Workers

System principle:
one Erlang process handles all signalling with a single mobile phone
When a signal received in payload plane:

payload plane translates a “signal” from the mobile phone into an
Erlang message

then sends it to the correct dynamic worker, and vice versa
A worker has a state machine:

receive a signall— do some computation — send' a reply signal

a little bit like an Entity Bean in J2EE

Dynamic workers cont.

A process crash should never affect other mobiles:
Erlangl guarantees memory protection

SW: errors in SGSN:
lead to a short service outage for the phone
dynamic worker will be restarted after the crash

Same for SW errors in MS:

e.g. failure to follow standards will' crash dynamic worker (offensive
programming)

Supervision and Escalation

Supervisor

Workerl Worker2 Worker3

Crashi of worker is noticed by supervisor
Supervisor triggers “recovery action”

Either the crashed worker is restarted
0)8

All workers are Killed and! restarted

Runtime code replacement

Fact: SW. is never bug free!
Must be able to install error corrections into already:
delivered systems without disturbing operation

Erlang can load a new version of a module in a running
Ssystem
Be careful!

Code loading reqguires co-operation from the running SW
and great care from the SW designer

Overload Protection

If CPU load or memory usage goes to high SGSN willl not
accept new connections from mobile phones

The SGSN must never stop to “respond” because of:
overload, better to skip service for some phones

Realized in message passing - iff OLP hits messages are
discarded:

Silently dropped
or a denial reply generated

Erlang basic syntax

Erlang shell : Tuples :

erl {1,2,cat,home}

Modules and Functions: Lists :

- module(my_mod). [{1,2,cat,home},1,2,3]
- export(double/1).

double(X) ->2*X. Variables :

_ A = {2,3,horse,stable}.
Calling double/1: B = [{1,2,cat,home},1,2,3].
my._mod:double(4). Ve =18

Fitin t:
Atoms: Writing to outpu

cat, dog, home, a2 jo:format(“Hello world 7).

Erlang| syntax - case and
functional clause

Case clause - case and pattern matchings:
Loc =
case Var of

{,, catX } -> lo:format(“Hellee Cat”),X ;
{,, horse,X } -> io:format(“Hello Horse ”),X ;
_ -> lefformat(“ No entrance ™),mone

end.

Function clause;

hello({ , ,cat,X D -> lo:format(“Hello Cat”),X ;
hello({ , ,horse,X D -> lo:fermat(“Hello Horse ”),X .
hello() - > jo:format(“ No entrance ”),none .

Erlang syntax - Recursion

Simple: Optimal - tail recursive:

- module(fact). - module(fact).
- export([factd/1]). - export([fact2/1]).

factl(0) -> fact2(N) ->
1; fact2(N;1).
factl(N) - > fact2(0,A) - >
N*factl(N - 1). A
fact2(N,A) - >
fact2(N - 1,N*A).

Erlang advanced: syntax

Dynamic code:

Fun= fun(Var)
case Var of

{,, cat,X } -> jeifformat(“Helle Cat”)X ;
{,_, horse,X } -> jo:format(“Hello Horse ”),X ;
_ -> loffermat(“Not welcome here *),none

end.

Calling Fun:
Fun({1,2,cat,home}).
Passing Fun to another function:

call_fun(Fun []) - > ok;
call_fun(Fun,[X|T) -> Fun(X), call_fun(Fun,T

List = [{1,2,cat,home},{2,3,horse,stable}].
call_fun(Fun,List)-

Erlang message passing

sender:

Pid ! Msg;

receiver:

recejve
Msg ->

<action>

end,

Example cont. - gen_server

sender:

Ret = gen_server.call(Pid

Feceiver:
handle_call(Msg) ->

case Msg of
fadd, N} ->
{reply, N + 1};

What about “functional
programming”?

Designers implementing the GPRS standards shouldl not
need to bother with programming details.

Framework code offiers lots off “abstractions™ to help out.

Almost like a DSL (domain specific language).
To realize this, functional proegramming; is very good!

But to summarize: FP is a great help — but not vital. Or?

Conclusions

Pros:
Erlang works well for GPRS traffic control handling
High' level language — concentrate on important parts

Has the right capabilities:
fault tolerance
distribution

Cons:
Hard to find good Erlang programmers
Erlang/OTP not yet a main stream language

Insufficient programming environments (debugging, modelling, etc)
Single implementation maintained by too few people - bugs

High level language — easy to create a real mess in just a few lines of
code...

Links and References

Erlang site:

Erlang User Conference (Nov 2008)
Erlang Community:

Erlang group on LinkedIn

Books

J. Armstrong
‘Programming Erlang” foadiamumiisd
J. Armstrong, R. Virding, C. Wikstrom, i
M. Williams 4 o
“Concurrent Programming in' Erlang” S

Concurrent,
Programming:in

ERLANG

: 5 PPPPP d Ecition

S ‘."_\.._

Jae Armstrong ‘Robett Wirdiha:
- Claes Wikstrom - Mike Williams

Questions?

