Direction for C++0x

Bjarne Stroustrup

Texas A&M University
(and AT&T — Research)
http://www.research.att.com

Abstract

A good programming language is far more than a simple collection of
features. My ideal is to provide a set of facilities that smoothly work
together to support design and programming styles of a generality
beyond my imagination. Here, | outline rules of thumb (guidelines,
principles) that are being applled In the design of C++0x. For example,
generality is preferred over specialization, novices as well as experts
are supported, library extensions are preferred over language changes,
compatibility with C++98 is emphasized, and evolution is preferred
over radical breaks with the past. Since principles cannot be understood
In isolation, | very briefly present a few of the proposals such as
concepts, generalized initialization, auto, template aliases, being
considered in the ISO C++ standards committee.

Overview

The problem
Standardization
Rules of thumb
Examples

If time permits:
Generic programming and concepts

Smmaries

|SO Standard C++

e C++ 1S ageneral-purpose programming language with a
bias towards systems programming that
— 1S a better C
— supports data abstraction
— supports object-oriented programming
— supports generic programming

« A multi-paradigm programming language
(if you must use long words)
— The most effective styles use a combination of techniques

Problems

o C++1s immensely popular
— well over 3 million programmers according to IDC

— Incredibly diverse user population
» Application areas
* Programmer ability

* Many people want improvements (of course)
— For people like them doing work like them
— “Just like language XYZ”

— And don’t increase the size of the language, it’s too big
already

« Many people absolutely need stability
— N*100M lines of code

Problems

* We can’t please everyone

— The list of requested features in large and growing
e See my C++ page
— The language really is uncomfortably large and complex

A language is far more than a simple collection of
features

— Designing a language feature to fit into a language is hard
o Generality
o Composability

— Adding a feature can harm users

» Performance

— compile time, run time
o Compatibility

— Source, linkage, ABIs
» Ease of learning

The (real) problems

e Help people to write better programs
— Easier to write
— Easler to maintain
— Easler to achieve acceptable resource usage

C++ I1SO Standardization

e Current status
— SO standard 1998, TC 2003,
— Library TR 2005, Performance TR 2005
— C++0x In the works — due 200x

 Membership

— About 22 nations (8 to 12 represented at each meeting)
* ANSI hosts the technical meetings
 Other nations have further technical meetings

— About 120 active members (50+ at each meeting)
* About 200 members in all
* Down ~40% from its height (1996), up again the last few years
 Process
— formal, slow, bureaucratic, and democratic
— “the worst way, except for all the rest” (apologies to W. Churchill)

Standardization — why bother?

Directly affects millions
— Huge potential for improvement
* S0 much code is appallingly poor
Defense against vendor lock-in
— Only a partial defense, of course
— I really don’t like proprietary languages

There are still many new techniques to get into use
— They require language or standard library support to affect mainstream use

For C++, the ISO standards process Is central

— C++ has no rich owner who dictates changes or controls a tame standards
progress

» And pays for marketing
— The C++ standards committee is the central forum of the C++ community
— For (too) many: “if it isn’t in the standard it doesn’t exist”

» Unfair, but a reality

Why mess with a good thing?
The ISO Standard i1s good

 but not perfect

ISO rules require review
o Community demands consideration of new ideas

We face increasingly difficult tasks
» We == programmers and system designers

The world changes
 and poses new challenges

We have learned a lot since 1996
* When the last of the ISO C++ features was proposed
Stability is good
 but the computing world craves novelty
» Without challenges, the best people will depart for greener pastures

Overall Goals

 Make C++ a better language for systems programming
and library building

— Rather than providing specialized facilities for a particular sub-community (e.g.
numeric computation or Windows-style application development)

e Make C++ easier to teach and learn

— Through increased uniformity, stronger guarantees, and facilities supportive of
novices (there will always be more novices than experts)

Rules of thumb / Ideals

Provide stability and compatibility

Prefer libraries to language extensions

Make only changes that changes the way people think
Prefer generality to specialization

Support both experts and novices

Increase type safety

Improve performance and ability to work directly
with hardware

Fit into the real world

Stability and compatibility

The aim for C++0x Is evolution constrained by a
strong need for compatibility.

The aim of that evolution is to provide major real-
world improvements.
— Not fiddling with minor detalils

100% compatibility is too constraining
— E.g. new keyword
 static_assert

— We avoid extreme circumlocution
o #define static_assert __ Static_assert

Libraries and language features

« Prefer libraries to language extensions

* A major aim of the language is to support better library
building
— Well-defined machine model
— Better support for generic programming
— Move semantics

* New library component examples
— Unordered_map (hash_map; Library TR 2004)
— Regexp (Library TR —2004)
— *“smart” pointers (Library TR —2004)
— File manipulation
— Threads

Prefer generality to specialization

e The aim for C++0x is to supply general language mechanisms
that can be used freely in combination and to deliver more
specialized features as standard library facilities built from
language features available to all.

o Examples

— Better generic programming support
— Improve initialization facilities
— Provide user-defined constant expressions (ROMable)

o C++ will remain a general-purpose language
— Not, a specialized
» web language,
« a Windows application language
» embedded systems programming language
— We’ll be better in all of those application areas — and more

Support novices

o C++ has become too “expert friendly”
e Most of us are novices at something most of the time

e Have you ever written something like this?
vector<vector<double>>v;
or this?
Int i = extract_int(s); /[s is a string, e.g. “12.37”
or this?
vector<int>::iterator p = find(tbl.begin(), tbl.end(), x);

Better (C++0x)

This’ll work

vector<vector<double>>v; // no space between the >s

auto p = find(tbl.begin(), tbl.end(), x);
// tbl is a const vector<int>
// p becomes vector<int>::const_iterator

The >> and auto solutions have been approved for C++0x

“Supporting novices of all backgrounds” requires work on
both the language and the standard library.

Concerns for education will be central for that

— E.g., “Learning Standard C++ as a new Language” [Stroustrup, 1999].
Overloading based on concepts, will allow a further
simplification

auto p = find(tbl, x); // tbl is some container

Type safety

For correctness, safety and security, and convenience
— complex, dangerous code:

void get_input(char* p)

{
char ch;
while (cin.get(ch) && liswhite(ch)) *p++ = ch;
*p — O,

}

— Better, much better:

string s;
cin >>s;

Type safety

For performance
— Messy, slow code:

struct Link {
Link* link;
void* data;
};
void my_clear(Link* p, intsz) // clear data of size sz

{
for (Link* g = p; q!=0; q = g->link) memset(g->data,0,sz);

}
— Simpler, faster code:

template<class In> void my_stl clear(In first, In last)

{
}

while (first!=last) *first++ = 0;

Areas of language change

Machine model and concurrency
Modules and libraries
Concepts and other type stuff

— Auto, decltype, template aliases,‘“strong enums”
— Initialization
Etc.

— >> static_assert, long long, for each, C99 character types

C++98 example

e |nitialize a vector
— clumsy

template<class T> class vector {
...
void push_back(const T&) {/* ... */ }
...

1

vector<double> v;
v.push_back(1.2);
v.push_back(2.3);
v.push_back(3.4);

C++98 example

* Initialize a vector
— Awkward
— Spurious use of (unsafe) array

template<class T> class vector {
/...

template <class Iter>
void vector(lter first, Iter last) { /* ... */ }
/...

&

inta[]={1.2,23,34};
vector<double> v(a, atsizeof(a)/sizeof(int));

— Important principle (currently violated):
 Support user-defined types as well as built-in types

C++0x version

template<Value_type T> class vector { // note: T is typed
...
vector(Sequence<T>); /[sequence constructor
/...

};
vector<double>v={1.2,2.3,3.4};

« Exactly how should the sequence constructor be defined?

Will this happen?

e Probably

— Lillehammer meeting adopted schedule aimed at ratified
standard in 2009 (feature complete late 2007)

— With the feature set as described here

« We’ll be flooded with new request before August 2005 “proposal
freeze”

o We’ll slip up a few times — this really is hard

— Ambitious, but
o We’ll work harder
* We have done it before

Generic programming:
The language Is straining

« Late checking
— At template instantiation time

e Poor error messages
— Amazingly so
» Pages!
« Too many clever tricks and workarounds

— Works beautifully for correct code

» Uncompromising performance is usually achieved
— After much effort

— Users are often totally baffled by simple errors

— The notation can be very verbose
» Pages for things that’s logically simple

What’s wrong?

e Poor separation between template definition and
template arguments
— But that’s essential for optimal code
— But that’s essential for flexible composition
— S0 we must Improve separation as much as possible
without breaking what’s essential
* We have to say too much (explicitly)
— So we must find ways to abbreviate and make implicit

e The template name lookup rules are too complex
— But we can’t break masses of existing code
— So find ways of saying things that avoid the complex rules

What’s right?

Parameterization doesn’t require hierarchy

— Less foresight required
» Handles separately developed code

— Handles built-in types beautifully
Parameterization with non-types
— Notably integers
Uncompromised efficiency

— Near-perfect inlining

Compile-time evaluation
— Template instantiation Is Turing complete

We try to strengthen and enhance what works well

Mflops

600

500

400

200

100

Comparison of performance for dense matrix—vector multiplication.

I ! ! ! —= MTL-KCC-linux
: : ; 2= BLAS-g77-linux
a, | g : ; -2 MTL-g++-linux
E 3 : ; — MTL-KCG-solaris
BLAS-f77—solans -
% : : j ~& MTL-g++-solaris

sy ; i i -

1)
L
G
i
i
1)
L1
1
in

300

C++0x proposals
related to generic programming

Concepts

— Type checking for template arguments
— Overloading based on template types
— Unified call syntax

— Unified template declaration syntax

auto/decltype

— Simplified notation

— Perfect forwarding (also using move semantics)
Template aliases

Generalized initializers

Example

template<Forward_iterator For, Value type V>
where Assignable<For::value_type,V>

void fill(For first, For last, const V& V)

{
while (first!=last) { *first = v; ++first; }

}

inti=0;
intj=9;
fill(i, j, 9.9); // error: int is not a Forward_iterator

Int* p= &v|[0];
Int* g = &Vv[9];
fill(p, g, 9.9); // ok

Alternate (explicit predicate) notation

A “concepts” Is a predicate on one or more types
(or types and integer values)

template<class For, class V>

where Forward _iterator<For>

&& Value type<V>

&& Assignable<For::value type,V>
void fill(For first, For last, const V& v)

{

while (first!=last) { *first = v; ++first; }

}

template<class T> means “for all types T”
template<C T> means “for all types T, such that C<T>”

Example

template<Forward_iterator For, Value type V>
where Assignable<For::value_type,V>
void fill(For first, For last, const V& V)

{
while (first!=last) {

*first = v;
first = first+1; // error: no + defined for Forward _iterator

}
}

Int* p= &v[0];

Int* g = &Vv|[9];

fill(p, g, 9.9);

In a template definition you can use only the operations defined
for the concept in the way they are specified in the concept

Yet another example

template<Value_type T> class vector {
...
vector(size_type n, const value type& x = value_type());
template<Input_iterator Iter> vector(lter first, Iter last);

h

vector<int>v1(100,1); // call 1%t constructor
int*p=...
int*q=...
vector<int>v2(p,q); // call 2" constructor

« Important principle (currently violated):

« the C++ standard library should be written in C++

— and preferably reasonably obvious and good C++ because people do
read it and copy its style

Defining concepts

concept Forward_iterator<class Iter>{

Iter p; /[uninitialized

Iter q =p; // copy initialization

p=aq; /[assignment

Iter& q = ++p; // can pre-increment, result usable as an Iter&

const Iter& cqg = p++; // can post-increment, result convertible to Iter

bool(p==0q); // equality comparisons, result convertible to bool
bool(p!=q);

Value type Iter::value type; // Iter has a member type value_type,
// which is a Value_type
Iter::value_type = *p; // *p is an Ivalue of Iter’s value type

*p:v;

USi ng d type (obvious match of concept)

class Ptr_to _int {
typedef int value_type;
Ptr_to_int& operator++(); // ++p
Pter_to_int operator++(int); // p++
INt& operator*(); Il *p
/...

h

bool operator==(const Ptr_to_int&, const Ptr_to_int&);
bool operator!=(Ptr_to_int, Ptr_to_int);

const int max = 100;
Int afmax];

Ptr_to_int pi(a);
Ptr_to_int pi2(a+100);
fill(pi, pi2, 77);

Using a type (not so obvious match of concept)

const int max = 100;
Int a[max];
fill(a, a+tmax, 77);

e Obviously, we want an Int* to be a Forward_Iterator
— But what about the member type value_type?

Explicit concept asserts

e Wwe can say “unless Ptr_to_int is a Forward_iterator

the compilation should fail”
static_assert Forward_iterator<Ptr_to_int>;

* The exact details are under vigorous debate

— | think that static asserts are necessary but their use must be
optional

Explicit concept asserts

// when uses as an argument for a Forward_iterator concept parameter,

/[value_type should be considered a member of T* with the “value” int:

static_assert template<Value _type T> Forward_iterator<T*> {
typedef T* pointer_type; // auxiliary name for predicate argument
typedef T pointer_type::value_type;

1

/[clearer, but would involve syntax extensions
static_assert template<Value_type T> Forward_iterator<T*> {
using T*::value type =T,

|

Core language suggestions (Lots!)

decltype/auto - type deduction from expressions
Template alias

#nomacro

Extern template

Dynamic library support

Allow local classes as template parameters

Move semantics

nullptr - Null pointer constant

Static assertions

Concepts (a type system for types)

Solve the forwarding problem

Variable-length template parameter lists

Simple compile-time reflection

GUI support (e.g. slots and signals)

Defaulting and inhibiting common operations
Class namespaces

long long

>> (without a space) to terminate two template specializations

Library TR

Hash Tables

Regular Expressions

General Purpose Smart Pointers
Extensible Random Number Facility
Mathematical Special Functions

Polymorphic Function Object Wrapper

Tuple Types

Type Traits

Enhanced Member Pointer Adaptor

Reference Wrapper

Uniform Method for Computing Function Object Return Types
Enhanced Binder

What’s out there? (Lots!)

Library building Is the most fertile source of ideas
— Libraries
— Core language

» Boost.org — libraries loosely based on the standard libraries

« ACE - portable distributed systems programming platform

» Blitz++ — the original template-expression linear-algebra library
» S| - statically checked international units

» Loki—mixed bag of very clever utility stuff

 Endless GUIs and GUI toolkits
— GTK+/gtkmm, Qt, FOX Toolkit, eclipse, FLTK, wxWindows, ...
e ... much, much more ...

see the C++ libraries FAQ
e Link on http://www.research.att.com/~bs/C++.html

What’s out there? Boost.org

Filesystem Library — Portable paths, iteration over directories, etc

MPL added — Template metaprogramming framework

Spirit Library — LL parser framework

Smart Pointers Library —

Date-Time Library —

Function Library — function objects

Signals — signals & slots callbacks

Graph library —

Test Library —

Regex Library — regular expressions

Format Library added — Type-safe 'printf-like' format operations
Multi-array Library added — Multidimensional containers and adaptors
Python Library — reflects C++ classes and functions into Python
UBLAS Library added — Basic linear algebra for dense, packed and sparse matrices
Lambda Library — for_each(a.begin(), a.end(), std::cout << _1<<'");
Random Number Library

Threads Library

Performance TR

e The aim of this report Is:

— to give the reader a model of time and space overheads implied by
use of various C++ language and library features,

— to debunk widespread myths about performance problems,

— to present techniques for use of C++ in applications where
performance matters, and

— to present techniques for implementing C++ language and standard
library facilities to yield efficient code.
e Contents
— Language features: overheads and strategies
— Creating efficient libraries
— Using C++ in embedded systems
— Hardware addressing interface

	Direction for C++0x
	Abstract
	Overview
	ISO Standard C++
	Problems
	Problems
	The (real) problems
	C++ ISO Standardization
	Standardization – why bother?
	Why mess with a good thing?
	Overall Goals
	Rules of thumb / Ideals
	Stability and compatibility
	Libraries and language features
	Prefer generality to specialization
	Support novices
	Better (C++0x)
	Type safety
	Type safety
	Areas of language change
	C++98 example
	C++98 example
	C++0x version
	Will this happen?
	Generic programming:The language is straining
	What’s wrong?
	What’s right?
	
	C++0x proposalsrelated to generic programming
	Example
	Alternate (explicit predicate) notation
	Example
	Yet another example
	Defining concepts
	Using a type (obvious match of concept)
	Using a type (not so obvious match of concept)
	Explicit concept asserts
	Explicit concept asserts
	Core language suggestions (Lots!)
	Library TR
	What’s out there? (Lots!)
	What’s out there? Boost.org
	Performance TR

