
Functional Programming in industryFunctional Programming in industry
ERLANG

Courtesy of Urban Boquist and Christer Nilsson (Ericsson Gothenburg)

Leslaw Lopacki  
leslaw@lopacki.net



OutlineOutline

►► Mobile Telecommunications NetworksMobile Telecommunications Networks

►► Packet Core Network Packet Core Network –– GPRS, UMTS & SGSNGPRS, UMTS & SGSN

►► Use of Erlang in SGSNUse of Erlang in SGSN

►► SGSN Design Principles for Erlang:SGSN Design Principles for Erlang:

�� concurrencyconcurrency

�� distributiondistribution

�� fault tolerancefault tolerance

�� overload protectionoverload protection

�� runtime code replacementruntime code replacement

►► Erlang basics and examplesErlang basics and examples



Mobile Telecommunications Mobile Telecommunications 
Networks Networks -- GSMGSM

CS – circuit switched

● voice
● SMS

PS – packet switched

● everything that is “IP”
● wap / www
● email
● MMS

Services in telecommunications networks:

GPRS - General Packet Radio Service 



Packet Core NetworkPacket Core Network
Radio Network Packet Core Network

►► GSN (GPRS Support Network) nodes:GSN (GPRS Support Network) nodes:

�� SGSN SGSN –– Serving GSNServing GSN

�� GGSN GGSN –– Gateway GSNGateway GSN

►► Basic throughput:Basic throughput:

�� Up to 115 kbps with GPRS Up to 115 kbps with GPRS 

�� Up to 240 kbps with EDGE Up to 240 kbps with EDGE –– Enhanced Data Rates for GSM EvolutionEnhanced Data Rates for GSM Evolution



PCN in PCN in ““3G3G”” and and ““TurboTurbo--3G3G”” ––
WCDMA and HSDPAWCDMA and HSDPA

►► Different Radio NetworkDifferent Radio Network

►► Packet Core Network (almost) the same as the one in GPRSPacket Core Network (almost) the same as the one in GPRS

►► Ericsson SGSN is Ericsson SGSN is ““dual accessdual access”” –– GPRS and WCDMA in oneGPRS and WCDMA in one

►► Much higher (end user) speeds:Much higher (end user) speeds:
Up to 384 kbps for 3G (WCDMA)Up to 384 kbps for 3G (WCDMA)
Up to 14.4 Mbps for HSDPA (later up to 42 Mbit Up to 14.4 Mbps for HSDPA (later up to 42 Mbit –– Evolved HSPA)Evolved HSPA)

►► Voice / video calls are still CS!Voice / video calls are still CS!

►► Streaming video is PS Streaming video is PS 
(TV == MBMS (TV == MBMS –– Multimedia Broadcast Multicast Service)Multimedia Broadcast Multicast Service)

►► Future: voice / video in PSFuture: voice / video in PS

►► ““VoiceVoice--overover--IPIP””



Ericsson SGSN NodeEricsson SGSN Node

Capacity
• ~ 50 k subscribers, 2000
• ~ 100 k subscribers, 2002
• ~ 500 k subscribers, 2004
• ~ 1 M subscribers, 2005
• ~ 2 M subscribers, 2008



SGSN SGSN –– Basic ServicesBasic Services

►► authenticationauthentication

►► admission controladmission control

►► quality of servicequality of service

►► mobilitymobility

►► roamingroaming

►► ......

Control Signalling Payload transport

►► user traffic user traffic 

►► chargingcharging



SGSN ArchitectureSGSN Architecture

CP CPCPCP

PP PPPPPP

...

...

Control Plane

Payload Plane

Switch

MS Internet

soft real time

hard real time



SGSN HardwareSGSN Hardware
►► ≈≈ 2020--30 Control Processors (boards):30 Control Processors (boards):

�� UltraSPARCUltraSPARC or PowerPC CPUsor PowerPC CPUs

�� 2 GB memory2 GB memory

�� Solaris/Linux + Erlang / C / C++Solaris/Linux + Erlang / C / C++

►► ≈≈ 2020--30 Payload Processors (boards):30 Payload Processors (boards):

�� PowerPC CPUsPowerPC CPUs

�� Special hardware (Special hardware (FPGAsFPGAs) for encryption) for encryption

�� Physical devices: frame relay, Physical devices: frame relay, atmatm, ..., ...

�� VxWorksVxWorks + C / C+++ C / C++

►► Backplane: 1 Backplane: 1 GbitGbit EthernetEthernet



SGSN Control SignallingSGSN Control Signalling

►► attach (phone is turned on)attach (phone is turned on)

►► israuisrau (routing area update, mobility in radio network)(routing area update, mobility in radio network)

►► activation (initiate payload traffic)activation (initiate payload traffic)

►► etc. [hundreds of signals]etc. [hundreds of signals]

Telecom standards are HUGE (see www.3gpp.org)!

We need a high level language – concentrate on 
GPRS, not on programming details!



Erlang/OTPErlang/OTP

►► Invented at Ericsson Computer Science Lab in the 1980s.Invented at Ericsson Computer Science Lab in the 1980s.

►► Intended for large scale reliable telecom systems.Intended for large scale reliable telecom systems.

►► Erlang is: Erlang is: 

�� functional language functional language 

�� with with builtbuilt--in support for concurrencyin support for concurrency

►► OTP (Open Telecom Platform)  OTP (Open Telecom Platform)  

== Erlang + lots of libraries.== Erlang + lots of libraries.



Why Erlang?Why Erlang?

►► Good things in Erlang:Good things in Erlang:

�� builtbuilt--in concurrency (processes and message passing)in concurrency (processes and message passing)

�� builtbuilt--in distributionin distribution

�� builtbuilt--in faultin fault--tolerancetolerance

�� support for runtime code replacementsupport for runtime code replacement

�� a dynamic languagea dynamic language

�� a dynamically typed languagea dynamically typed language

►► This is exactly what is needed to build a robust Control Plane iThis is exactly what is needed to build a robust Control Plane in a n a 

telecom system!telecom system!

In SGSN:In SGSN:

►► Control Plane Software is not time critical (Erlang)Control Plane Software is not time critical (Erlang)

►► User Plane (payload) is time critical (C)User Plane (payload) is time critical (C)



Erlang Erlang –– ConcurrencyConcurrency

►► ““NormalNormal”” synchronization primitives synchronization primitives -- semaphores or monitorssemaphores or monitors

�� does not look the same in Erlangdoes not look the same in Erlang

�� instead everything is done with processes and message passing.instead everything is done with processes and message passing.

►► Mutual exclusion:Mutual exclusion:

�� use a single process to handle resourceuse a single process to handle resource

�� clients call process to get access.clients call process to get access.

►► Critical sections:Critical sections:

�� allow only one process to execute sectionallow only one process to execute section



Erlang Erlang -- DistributionDistribution
►► General rule in SGSN: General rule in SGSN: 

�� avoid remote communication or synchronization if possibleavoid remote communication or synchronization if possible

►► Design algorithms that work independently on each node:Design algorithms that work independently on each node:

�� fault tolerancefault tolerance

�� load balancingload balancing

►► Avoid relying on global resourcesAvoid relying on global resources

►► Data handling:Data handling:

�� keep as much locally as possible (typically traffic data associakeep as much locally as possible (typically traffic data associated ted 

with mobile phones)with mobile phones)

�� some data must be distributed / shared (e.g. using some data must be distributed / shared (e.g. using mnesiamnesia))

�� many different variants of persistency, redundancy, replicationmany different variants of persistency, redundancy, replication



Fault ToleranceFault Tolerance
►► SGSN must never be outSGSN must never be out--ofof--service!              (99.999%)service!              (99.999%)

►► Hardware fault toleranceHardware fault tolerance

�� Faulty boards are automatically taken out of serviceFaulty boards are automatically taken out of service

�� Mobile phones automatically redistributedMobile phones automatically redistributed

►► Software fault toleranceSoftware fault tolerance

�� SW error triggered by one phone should not affect others!SW error triggered by one phone should not affect others!

�� Serious error in Serious error in ““system SWsystem SW”” should affect at most the phones should affect at most the phones 

handled by that board (not the whole node)handled by that board (not the whole node)

How can such requirements be realized?

Example: the SW handling one phone goes crazy and overwrites all the 
memory with garbage.



SGSN Architecture SGSN Architecture –– Control PlaneControl Plane

►► On each CP On each CP ≈≈ 100 processes providing 100 processes providing ““system servicessystem services””

�� ““static workersstatic workers””

►► On each CP On each CP ≈≈ 50.000 processes each handling one phone50.000 processes each handling one phone

�� ““dynamic workersdynamic workers””

CP CP CP



Dynamic workersDynamic workers

►► System principle: System principle: 

�� one Erlang process handles all signalling with a single mobile pone Erlang process handles all signalling with a single mobile phonehone

►► When a signal received in payload plane:When a signal received in payload plane:

�� payload plane translates a payload plane translates a ““signalsignal”” from the mobile phone into an from the mobile phone into an 

Erlang message Erlang message 

�� then sends it to the correct dynamic worker, and vice versathen sends it to the correct dynamic worker, and vice versa

►► A worker has a state machine: A worker has a state machine: 

�� receive a signal receive a signal –– do some computation do some computation –– send a reply signal send a reply signal 

�� a little bit like an Entity Bean in J2EEa little bit like an Entity Bean in J2EE



Dynamic workers cont.Dynamic workers cont.

►► A process crash should never affect other mobiles:A process crash should never affect other mobiles:

�� Erlang guarantees memory protectionErlang guarantees memory protection

►► SW errors in SGSN:SW errors in SGSN:

�� lead to a short service outage for the phonelead to a short service outage for the phone

�� dynamic worker will be restarted after the crashdynamic worker will be restarted after the crash

►► Same for SW errors in MS:Same for SW errors in MS:

�� e.g. failure to follow standards will crash dynamic worker (offee.g. failure to follow standards will crash dynamic worker (offensive nsive 

programming)programming)



Supervision and EscalationSupervision and Escalation

►► Crash of worker is noticed by supervisorCrash of worker is noticed by supervisor

►► Supervisor triggers Supervisor triggers ““recovery actionrecovery action””

►► Either the crashed worker is restartedEither the crashed worker is restarted

oror

►► All workers are killed and restartedAll workers are killed and restarted

Supervisor

Worker1 Worker2 Worker3



Runtime code replacementRuntime code replacement

►► Fact: SW is never bug free!Fact: SW is never bug free!

►► Must be able to install error corrections into already Must be able to install error corrections into already 

delivered systems without disturbing operationdelivered systems without disturbing operation

►► Erlang can load a new version of a module in a running Erlang can load a new version of a module in a running 

systemsystem

►► Be careful! Be careful! 

Code loading requires coCode loading requires co--operation from the running SW operation from the running SW 

and great care from the SW designerand great care from the SW designer



Overload ProtectionOverload Protection

►► If CPU load or memory usage goes to high SGSN will not If CPU load or memory usage goes to high SGSN will not 
accept new connections from mobile phonesaccept new connections from mobile phones

►► The SGSN must never stop to The SGSN must never stop to ““respondrespond”” because of because of 

overload, better to skip service for some phonesoverload, better to skip service for some phones

►► Realized in message passing Realized in message passing -- if OLP hits messages are if OLP hits messages are 

discarded:discarded:

�� silently droppedsilently dropped

�� or a denial reply generatedor a denial reply generated



Erlang basic syntaxErlang basic syntax

►► Erlang shellErlang shell : : 

erlerl

►► Modules and Functions: Modules and Functions: 

-- module(my_modmodule(my_mod ).).
-- export(double/1).export(double/1).

double(Xdouble(X ) ) -- > 2 * X.> 2 * X.

►► Calling double/1:Calling double/1:

my_mod:double(4).my_mod:double(4).

►► Atoms:Atoms:

cat, dog, home, a2 ..cat, dog, home, a2 ..

►► TuplesTuples : : 

{1,2,cat,home}{1,2,cat,home}

►► Lists :Lists :

[{1,2,cat,home},1,2,3][{1,2,cat,home},1,2,3]

►► Variables :Variables :

A = {2,3,horse,stable}.A = {2,3,horse,stable}.
B = [{1,2,cat,home},1,2,3].B = [{1,2,cat,home},1,2,3].
VarVar = [A|B].= [A|B].

►► Writing to output:Writing to output:

io:format(io:format( ““ HelloHello worldworld ”” ).).



Erlang syntax Erlang syntax -- case and case and 

functional clausefunctional clause

►► Case clause Case clause -- case and pattern matching:case and pattern matching:
……
Loc = Loc = 

case case VarVar ofof
{_,_,{_,_, cat,Xcat,X } } -- > > io:format(io:format( ““ HelloHello CatCat ”” ),X),X ;;
{_,_,{_,_, horse,Xhorse,X } } -- > > io:format(io:format( ““ HelloHello HorseHorse ”” ),X),X ; ; 
_ _ -- > > io:format(io:format( ““ NoNo entranceentrance ”” ),none),none

end.end.
……

►► Function clause:Function clause:
……
hello({_,_,cat,Xhello({_,_,cat,X }) }) -- > > io:format(io:format( ““ HelloHello CatCat ”” ),X),X ;;
hello({_,_,horse,Xhello({_,_,horse,X }) }) -- > > io:format(io:format( ““ HelloHello HorseHorse ”” ),X),X ..
hello(_) hello(_) -- > > io:format(io:format( ““ NoNo entranceentrance ”” ),none),none ..
……



Erlang syntax Erlang syntax -- RecursionRecursion

►► Simple:Simple:

-- module(factmodule(fact ). ). 

-- export([fact1/1]). export([fact1/1]). 

fact1(0) fact1(0) -- > > 
1; 1; 

fact1(N) fact1(N) -- > > 

N*fact1(NN*fact1(N -- 1).1).

►► Optimal Optimal -- tail recursive:tail recursive:

-- module(factmodule(fact ). ). 

-- export([fact2/1]). export([fact2/1]). 

fact2(N) fact2(N) -- > > 
fact2(N,1). fact2(N,1). 

fact2(0,A) fact2(0,A) -- > > 
A; A; 

fact2(N,A) fact2(N,A) -- > > 
fact2(Nfact2(N -- 1,N*A).1,N*A).



Erlang advanced syntaxErlang advanced syntax

►► Dynamic code:Dynamic code:
……
Fun = Fun = fun(Varfun(Var ) ) 

case case VarVar ofof
{_,_,{_,_, cat,Xcat,X } } -- > > io:format(io:format( ““ HelloHello CatCat ”” ),X),X ;;
{_,_,{_,_, horse,Xhorse,X } } -- > > io:format(io:format( ““ HelloHello HorseHorse ”” ),X),X ; ; 

_ _ -- > > io:format(io:format( ““ NotNot welcome welcome herehere ”” ),none),none
end.end.

……

Calling Fun:Calling Fun:

Fun({1,2,cat,home}).Fun({1,2,cat,home}).

Passing Fun to another function:Passing Fun to another function:

call_fun(Funcall_fun(Fun ,[]) ,[]) -- > ok;> ok;
call_fun(Fun,[X|Tcall_fun(Fun,[X|T ]) ]) -- > > Fun(XFun(X ), ), call_fun(Fun,Tcall_fun(Fun,T ).).
……
List = [{1,2,cat,home},{2,3,horse,stable}]. List = [{1,2,cat,home},{2,3,horse,stable}]. 
call_fun(Fun,Listcall_fun(Fun,List ).).



Erlang message passingErlang message passing

sender:sender:

……

PidPid ! ! MsgMsg,,

……

receiver:receiver:

……

receivereceive
MsgMsg -- >>

<action><action>

end,end,

……



Example cont. Example cont. -- gen_servergen_server

sender:sender:
……

Ret = Ret = gen_server:call(Pidgen_server:call(Pid , , MsgMsg),),

……

receiver:receiver:
handle_call(Msghandle_call(Msg ) ) -- >>

case case MsgMsg ofof

{add, N} {add, N} -- >>

{reply, N + 1};{reply, N + 1};

......
end.end.



What about What about ””functional functional 

programmingprogramming””??

►► Designers implementing the GPRS standards should not Designers implementing the GPRS standards should not 

need to bother with programming details.need to bother with programming details.

►► Framework code offers lots of Framework code offers lots of ””abstractionsabstractions”” to help out.to help out.

►► Almost like a DSL (domain specific language).Almost like a DSL (domain specific language).

►► To realize this, functional programming is very good!To realize this, functional programming is very good!

►► But to summarize: FP is a great help But to summarize: FP is a great help –– but not vital. Or?but not vital. Or?



ConclusionsConclusions

Pros:Pros:

►► Erlang works well for GPRS traffic control handlingErlang works well for GPRS traffic control handling

►► High level language High level language –– concentrate on important partsconcentrate on important parts

►► Has the right capabilities:Has the right capabilities:

�� fault tolerancefault tolerance

�� distributiondistribution

�� ......

Cons:Cons:

►► Hard to find good Erlang programmersHard to find good Erlang programmers

►► Erlang/OTP not yet a main stream languageErlang/OTP not yet a main stream language

�� Insufficient programming environments (debugging, modelling, etcInsufficient programming environments (debugging, modelling, etc))

�� Single implementation maintained by too few people Single implementation maintained by too few people -- bugsbugs

►► High level language High level language –– easy to create a real mess in just a few lines of easy to create a real mess in just a few lines of 

code...code...



Links and ReferencesLinks and References

►► Erlang site:Erlang site:

http://www.erlang.orghttp://www.erlang.org

►► Erlang User Conference (Nov 2008)Erlang User Conference (Nov 2008)

►► Erlang Community:Erlang Community:

http://trapexit.orghttp://trapexit.org

►► Erlang group on LinkedInErlang group on LinkedIn



BooksBooks

►► J. ArmstrongJ. Armstrong
““Programming ErlangProgramming Erlang””

►► J. Armstrong, R. J. Armstrong, R. VirdingVirding, C. , C. WikstrWikströömm, , 
M. WilliamsM. Williams
““Concurrent Programming in ErlangConcurrent Programming in Erlang””



Questions?Questions?


