
Release Management in
Large Free Software Projects

Martin Michlmayr
University of Cambridge
tbm@cyrius.com

Martin Michlmayr Release Management in Large Free Software Projects

tbm@cyrius.com


Agenda

Background of this research
Projects: selection criteria; problems and solutions
Why time-based releases work
Implementing time-based releases
Conclusions

Martin Michlmayr Release Management in Large Free Software Projects



Background

Investigating free software from a quality perspective
Approach: issues of coordination and management
Process improvement
Problematic areas? Release management

Martin Michlmayr Release Management in Large Free Software Projects



Project selection

Large and complex
Voluntary
Distributed
Time-based

Martin Michlmayr Release Management in Large Free Software Projects



Projects

Project Interval Introduction
Debian 15-18 months middle of 2005
GCC 6 months 2001
GNOME 6 months beginning of 2003
Linux kernel 2 week merge middle of 2005
OpenOffice.org 3 months beginning of 2005
Plone 6 months beginning of 2006
X.org 6 months end of 2005

Martin Michlmayr Release Management in Large Free Software Projects



Debian

Version Release Date Months
1.1 1996-06-17
1.2 1996-12-12 6
1.3 1997-06-02 6
2.0 1998-07-24 14
2.1 1999-03-09 7
2.2 2000-08-14 17
3.0 2002-07-19 23
3.1 2005-06-06 35
4.0 2007-04-08 22

Martin Michlmayr Release Management in Large Free Software Projects



Debian

Past problems

Release management was not very organized; infrequent
release updates
Blockers found late during the release
Delays: out of date software
Bad image for the project

Solutions

Implementation of better release management structures
A release date was set well in advance
Regular release announcements and updates
Definition of release targets
Clarification of responsibilities

Outstanding problems

Developers need to see that targets can be met

Martin Michlmayr Release Management in Large Free Software Projects



GCC

Version Release Date Months
3.0 2001-06-18
3.1 2002-05-15 11
3.2 2002-08-14 3
3.3 2003-05-13 9
3.4.0 2004-04-18 11
4.0.0 2005-04-20 12
4.1.0 2006-02-28 10

Martin Michlmayr Release Management in Large Free Software Projects



GCC

Past problems

Closed development
Long time between releases, no public snapshots
When development picked up, changes often broke
development tree

Solutions

Introduction of open development style, steering committee
Division of development phase into 3 stages
Patches are peer reviewed

Outstanding problems

The release manager is busy

Martin Michlmayr Release Management in Large Free Software Projects



GNOME

Version Release Date Months
1.0 1999-03-03
1.2 2000-05-25 15
1.4 2001-04-02 10
2.0 2002-06-27 15
2.2 2003-02-06 7
2.4 2003-09-11 7
2.6 2004-03-31 7
2.8 2004-09-15 6
2.10 2005-03-09 6
2.12 2005-09-07 6
2.14 2006-03-15 6
2.16 2006-09-06 6
2.18 2007-03-14 6

Martin Michlmayr Release Management in Large Free Software Projects



GNOME

Past problems

Version 2.0 was supposed to mainly change internal
interfaces. Delays. Developers frustration
It was not clear what was going on
Freezes often came unexpectedly, did not lead to a release
Vendors had deadlines but GNOME’s schedule was
unpredictable

Solutions

Introduction of a rigorous schedule and policies
Introduction of the idea of reverting
The project gained credibility because releases were
actually performed on time

Outstanding problems

Concerns whether this release cycle makes the project
less innovative

Martin Michlmayr Release Management in Large Free Software Projects



Linux

Version Release Date Months
1.0 1994-03-14
1.2 1995-03-07 12
2.0 1996-06-09 15
2.2 1999-01-25 31
2.4 2001-01-04 23
2.6 2003-12-17 35

Martin Michlmayr Release Management in Large Free Software Projects



Linux

Past problems

Due to the long release cycle, many changes accumulated
Features got out very slowly
Vendors backported many features to their own releases

Solutions

New versions are now released every two or three months
Steady flow of code into production and many people get
to test the new code
Features get out more quickly
Vendors can directly work with current releases and the
community

Outstanding problems

There is no long-term stable version
Regressions between versions are often introduced

Martin Michlmayr Release Management in Large Free Software Projects



OpenOffice.org

Version Release Date Months
1.0 2002-05-01
1.1 2003-09-02 16
2.0 2005-10-20 26

2.0.1 2005-12-21 2
2.0.2 2006-03-08 3
2.0.3 2006-06-29 4
2.0.4 2006-10-13 3
2.1.0 2006-12-12 2
2.2.0 2007-03-29 4

Martin Michlmayr Release Management in Large Free Software Projects



OpenOffice.org

Past problems

Due to the long release cycle little testing occurred
Many changes accumulated
Features were put in very late, even during the beta cycle
Vendors shipped unreleased versions

Solutions

The project moved to a 3 month release interval, creating a
tight feedback loop with users
Better planning allows more collaboration between vendors
Motivation in the project has increased
The release process has become more transparent

Outstanding problems

Move from 3 to 6 months: too much pressure on QA, and
users don’t want to upgrade

Martin Michlmayr Release Management in Large Free Software Projects



Plone

Version Release Date Months
1.0 2003-02-06
2.0 2004-03-23 13
2.1 2005-09-06 17
2.5 2006-06-16 9

Martin Michlmayr Release Management in Large Free Software Projects



Plone

Past problems

Releases took a long time to get out
Releases had many changes and caused migration
problems
Unpredictability of Plone is bad for web developers

Solutions

Implementation of better development structures
Deadlines have motivated developers to finish features
Web developers can decide in advance which version to
use

Outstanding problems

Can they release on time?

Martin Michlmayr Release Management in Large Free Software Projects



X.org

Version Release Date Months
7.0 2005-12-21
7.1 2006-05-22 5
7.2 2007-02-15 9

Martin Michlmayr Release Management in Large Free Software Projects



X.org

Past problems

XFree86: infrequent releases, no plan, and rigid structure
The code base was huge and monolithic: hard to test and
attract new volunteers

Solutions

X.org moved from a monolithic to a modular system
Introduction of two release mechanisms: releases of
individual components, and roll-up releases of all
components
Creation of a fall back mechanism in case components are
not ready for release

Outstanding problems

Get experience with time-based releases

Martin Michlmayr Release Management in Large Free Software Projects



The fundamental problem

Independent development, little coordination
Release: requires alignment of all work
Sudden, unexpected call of alignment leads to problems

Martin Michlmayr Release Management in Large Free Software Projects



What are time-based releases?

Instead of releasing when a certain set of features has
been achieved, you release according to time
You don’t have to release on the specific release date if
there are issues
You can still plan to have features, just not wait for them

Martin Michlmayr Release Management in Large Free Software Projects



What conditions are necessary?

Enough work gets done
Distribution is cheap
Releases don’t require specific functionality
The project is modular

Martin Michlmayr Release Management in Large Free Software Projects



Coordination mechanisms

Regularity

Reference point
Discipline and self-restraint
Familiarity

Schedule

Gives people information to work independently
Reduces coordination

Martin Michlmayr Release Management in Large Free Software Projects



Incentives

Organizations: predictability
Users: periodical fixes, smooth upgrades
Developers: know when they have to get code in,
contributions get out to users quickly
Vendors: can plan and work with the community

Martin Michlmayr Release Management in Large Free Software Projects



Release Interval

Regularity and predictability
User requirements
Commercial interests: e.g. book authors
Cost factors related to releasing

Support for old releases
Fixed costs of releases
Confusion among users
Fragmentation of users
Upgrade costs

Network effects: working with other projects and
distributions

Martin Michlmayr Release Management in Large Free Software Projects



Conclusions

Some free software projects have successfully reacted to
change (growth, users, etc.)
Time-based releases are effective because they introduce
two coordination mechanisms: regularity and the use of
schedules.
Time-based releases are an effective mechanism to
establish better planning in projects with little control over
voluntary contributors.
What does this mean for other volunteer projects?
More information: http://www.cyrius.com/research/

Martin Michlmayr Release Management in Large Free Software Projects


