
Direction for C++0x

Bjarne Stroustrup
Texas A&M University

(and AT&T – Research)
http://www.research.att.com

Abstract

A good programming language is far more than a simple collection of
features. My ideal is to provide a set of facilities that smoothly work
together to support design and programming styles of a generality
beyond my imagination. Here, I outline rules of thumb (guidelines,
principles) that are being applied in the design of C++0x. For example,
generality is preferred over specialization, novices as well as experts
are supported, library extensions are preferred over language changes,
compatibility with C++98 is emphasized, and evolution is preferred
over radical breaks with the past. Since principles cannot be understood
in isolation, I very briefly present a few of the proposals such as
concepts, generalized initialization, auto, template aliases, being
considered in the ISO C++ standards committee.

Overview

• The problem
• Standardization
• Rules of thumb
• Examples
• If time permits:

Generic programming and concepts
• Smmaries

ISO Standard C++

• C++ is a general-purpose programming language with a
bias towards systems programming that
– is a better C
– supports data abstraction
– supports object-oriented programming
– supports generic programming

• A multi-paradigm programming language
(if you must use long words)

– The most effective styles use a combination of techniques

Problems
• C++ is immensely popular

– well over 3 million programmers according to IDC
– incredibly diverse user population

• Application areas
• Programmer ability

• Many people want improvements (of course)
– For people like them doing work like them
– “just like language XYZ”
– And don’t increase the size of the language, it’s too big

already
• Many people absolutely need stability

– N*100M lines of code

Problems
• We can’t please everyone

– The list of requested features in large and growing
• See my C++ page

– The language really is uncomfortably large and complex
• A language is far more than a simple collection of

features
– Designing a language feature to fit into a language is hard

• Generality
• Composability

– Adding a feature can harm users
• Performance

– compile time, run time
• Compatibility

– Source, linkage, ABIs
• Ease of learning

The (real) problems

• Help people to write better programs
– Easier to write
– Easier to maintain
– Easier to achieve acceptable resource usage

C++ ISO Standardization
• Current status

– ISO standard 1998, TC 2003,
– Library TR 2005, Performance TR 2005
– C++0x in the works – due 200x

• Membership
– About 22 nations (8 to 12 represented at each meeting)

• ANSI hosts the technical meetings
• Other nations have further technical meetings

– About 120 active members (50+ at each meeting)
• About 200 members in all
• Down ~40% from its height (1996), up again the last few years

• Process
– formal, slow, bureaucratic, and democratic
– “the worst way, except for all the rest” (apologies to W. Churchill)

Standardization – why bother?
• Directly affects millions

– Huge potential for improvement
• So much code is appallingly poor

• Defense against vendor lock-in
– Only a partial defense, of course
– I really don’t like proprietary languages

• There are still many new techniques to get into use
– They require language or standard library support to affect mainstream use

• For C++, the ISO standards process is central
– C++ has no rich owner who dictates changes or controls a tame standards

progress
• And pays for marketing

– The C++ standards committee is the central forum of the C++ community
– For (too) many: “if it isn’t in the standard it doesn’t exist”

• Unfair, but a reality

Why mess with a good thing?
• The ISO Standard is good

• but not perfect

• ISO rules require review
• Community demands consideration of new ideas

• We face increasingly difficult tasks
• We == programmers and system designers

• The world changes
• and poses new challenges

• We have learned a lot since 1996
• When the last of the ISO C++ features was proposed

• Stability is good
• but the computing world craves novelty
• Without challenges, the best people will depart for greener pastures

Overall Goals

• Make C++ a better language for systems programming
and library building

– Rather than providing specialized facilities for a particular sub-community (e.g.
numeric computation or Windows-style application development)

• Make C++ easier to teach and learn
– Through increased uniformity, stronger guarantees, and facilities supportive of

novices (there will always be more novices than experts)

Rules of thumb / Ideals
• Provide stability and compatibility
• Prefer libraries to language extensions
• Make only changes that changes the way people think
• Prefer generality to specialization
• Support both experts and novices
• Increase type safety
• Improve performance and ability to work directly

with hardware
• Fit into the real world

Stability and compatibility
• The aim for C++0x is evolution constrained by a

strong need for compatibility.
• The aim of that evolution is to provide major real-

world improvements.
– Not fiddling with minor details

• 100% compatibility is too constraining
– E.g. new keyword

• static_assert
– We avoid extreme circumlocution

• #define static_assert __Static_assert

Libraries and language features
• Prefer libraries to language extensions
• A major aim of the language is to support better library

building
– Well-defined machine model
– Better support for generic programming
– Move semantics

• New library component examples
– Unordered_map (hash_map; Library TR 2004)
– Regexp (Library TR – 2004)
– “smart” pointers (Library TR – 2004)
– File manipulation
– Threads

Prefer generality to specialization
• The aim for C++0x is to supply general language mechanisms

that can be used freely in combination and to deliver more
specialized features as standard library facilities built from
language features available to all.

• Examples
– Better generic programming support
– Improve initialization facilities
– Provide user-defined constant expressions (ROMable)

• C++ will remain a general-purpose language
– Not, a specialized

• web language,
• a Windows application language
• embedded systems programming language

– We’ll be better in all of those application areas – and more

Support novices

• C++ has become too “expert friendly”
• Most of us are novices at something most of the time

• Have you ever written something like this?
vector<vector<double>> v;

or this?
int i = extract_int(s); // s is a string, e.g. “12.37”

or this?
vector<int>::iterator p = find(tbl.begin(), tbl.end(), x);

Better (C++0x)
• This’ll work

vector<vector<double>> v; // no space between the >s

auto p = find(tbl.begin(), tbl.end(), x);
// tbl is a const vector<int>
// p becomes vector<int>::const_iterator

• The >> and auto solutions have been approved for C++0x
• “Supporting novices of all backgrounds” requires work on

both the language and the standard library.
• Concerns for education will be central for that

– E.g., “Learning Standard C++ as a new Language” [Stroustrup, 1999].
• Overloading based on concepts, will allow a further

simplification
auto p = find(tbl, x); // tbl is some container

Type safety
• For correctness, safety and security, and convenience

– complex, dangerous code:
void get_input(char* p)
{

char ch;
while (cin.get(ch) && !iswhite(ch)) *p++ = ch;
*p = 0;

}

– Better, much better:
string s;
cin >> s;

Type safety
• For performance

– Messy, slow code:
struct Link {

Link* link;
void* data;

};

void my_clear(Link* p, int sz) // clear data of size sz
{

for (Link* q = p; q!=0; q = q->link) memset(q->data,0,sz);
}

– Simpler, faster code:
template<class In> void my_stl_clear(In first, In last)

{
while (first!=last) *first++ = 0;

}

Areas of language change

• Machine model and concurrency
• Modules and libraries
• Concepts and other type stuff

– Auto, decltype, template aliases,“strong enums”
– initialization

• Etc.
– >>, static_assert, long long, for each, C99 character types

C++98 example
• Initialize a vector

– clumsy

template<class T> class vector {
// …
void push_back(const T&) { /* … */ }
// …

};

vector<double> v;
v.push_back(1.2);
v.push_back(2.3);
v.push_back(3.4);

C++98 example
• Initialize a vector

– Awkward
– Spurious use of (unsafe) array

template<class T> class vector {
// …
template <class Iter>

void vector(Iter first, Iter last) { /* … */ }
// …

};

int a[] = { 1.2, 2.3, 3.4 };
vector<double> v(a, a+sizeof(a)/sizeof(int));

– Important principle (currently violated):
• Support user-defined types as well as built-in types

C++0x version
template<Value_type T> class vector { // note: T is typed

// …
vector(Sequence<T>); // sequence constructor
// …

};
vector<double> v = { 1.2, 2.3, 3.4 };

• Exactly how should the sequence constructor be defined?

Will this happen?

• Probably
– Lillehammer meeting adopted schedule aimed at ratified

standard in 2009 (feature complete late 2007)
– With the feature set as described here

• We’ll be flooded with new request before August 2005 “proposal
freeze”

• We’ll slip up a few times – this really is hard

– Ambitious, but
• We’ll work harder
• We have done it before

Generic programming:
The language is straining

• Late checking
– At template instantiation time

• Poor error messages
– Amazingly so

• Pages!

• Too many clever tricks and workarounds
– Works beautifully for correct code

• Uncompromising performance is usually achieved
– After much effort

– Users are often totally baffled by simple errors
– The notation can be very verbose

• Pages for things that’s logically simple

What’s wrong?

• Poor separation between template definition and
template arguments
– But that’s essential for optimal code
– But that’s essential for flexible composition
– So we must improve separation as much as possible

without breaking what’s essential
• We have to say too much (explicitly)

– So we must find ways to abbreviate and make implicit
• The template name lookup rules are too complex

– But we can’t break masses of existing code
– So find ways of saying things that avoid the complex rules

What’s right?

• Parameterization doesn’t require hierarchy
– Less foresight required

• Handles separately developed code
– Handles built-in types beautifully

• Parameterization with non-types
– Notably integers

• Uncompromised efficiency
– Near-perfect inlining

• Compile-time evaluation
– Template instantiation is Turing complete

We try to strengthen and enhance what works well

C++0x proposals
related to generic programming

• Concepts
– Type checking for template arguments
– Overloading based on template types
– Unified call syntax
– Unified template declaration syntax

• auto/decltype
– Simplified notation
– Perfect forwarding (also using move semantics)

• Template aliases
• Generalized initializers

Example
template<Forward_iterator For, Value_type V>

where Assignable<For::value_type,V>
void fill(For first, For last, const V& v)
{

while (first!=last) { *first = v; ++first; }
}

int i = 0;
int j = 9;
fill(i, j, 9.9); // error: int is not a Forward_iterator

int* p= &v[0];
int* q = &v[9];
fill(p, q, 9.9); // ok

Alternate (explicit predicate) notation

A “concepts” is a predicate on one or more types
(or types and integer values)

template<class For, class V>
where Forward_iterator<For>
&& Value_type<V>
&& Assignable<For::value_type,V>

void fill(For first, For last, const V& v)
{

while (first!=last) { *first = v; ++first; }
}

template<class T> means “for all types T”
template<C T> means “for all types T, such that C<T>”

Example
template<Forward_iterator For, Value_type V>

where Assignable<For::value_type,V>
void fill(For first, For last, const V& v)
{

while (first!=last) {
*first = v;
first = first+1; // error: no + defined for Forward_iterator

}
}

int* p= &v[0];
int* q = &v[9];
fill(p, q, 9.9);
In a template definition you can use only the operations defined

for the concept in the way they are specified in the concept

Yet another example
template<Value_type T> class vector {

// …
vector(size_type n, const value_type& x = value_type());
template<Input_iterator Iter> vector(Iter first, Iter last);

};

vector<int> v1(100,1); // call 1st constructor
int* p = …
int* q = …
vector<int> v2(p,q); // call 2nd constructor

• Important principle (currently violated):
• the C++ standard library should be written in C++

– and preferably reasonably obvious and good C++ because people do
read it and copy its style

Defining concepts
concept Forward_iterator<class Iter>{

Iter p; // uninitialized
Iter q =p; // copy initialization
p = q; // assignment

Iter& q = ++p; // can pre-increment, result usable as an Iter&
const Iter& cq = p++; // can post-increment, result convertible to Iter

bool(p==q); // equality comparisons, result convertible to bool
bool(p!=q);

Value_type Iter::value_type; // Iter has a member type value_type,
// which is a Value_type

Iter::value_type = *p; // *p is an lvalue of Iter’s value type
*p = v;

};

Using a type (obvious match of concept)

class Ptr_to_int {
typedef int value_type;
Ptr_to_int& operator++(); // ++p
Pter_to_int operator++(int); // p++
int& operator*(); // *p
// …

};

bool operator==(const Ptr_to_int&, const Ptr_to_int&);
bool operator!=(Ptr_to_int, Ptr_to_int);

const int max = 100;
int a[max];
Ptr_to_int pi(a);
Ptr_to_int pi2(a+100);
fill(pi, pi2, 77);

Using a type (not so obvious match of concept)

const int max = 100;
int a[max];
fill(a, a+max, 77);

• Obviously, we want an int* to be a Forward_iterator
– But what about the member type value_type?

Explicit concept asserts

• we can say “unless Ptr_to_int is a Forward_iterator
the compilation should fail”

static_assert Forward_iterator<Ptr_to_int>;

• The exact details are under vigorous debate
– I think that static asserts are necessary but their use must be

optional

Explicit concept asserts
// when uses as an argument for a Forward_iterator concept parameter,
// value_type should be considered a member of T* with the “value” int:
static_assert template<Value_type T> Forward_iterator<T*> {

typedef T* pointer_type; // auxiliary name for predicate argument
typedef T pointer_type::value_type;

};

// clearer, but would involve syntax extensions
static_assert template<Value_type T> Forward_iterator<T*> {

using T*::value_type = T;
};

Core language suggestions (Lots!)
• decltype/auto – type deduction from expressions
• Template alias
• #nomacro
• Extern template
• Dynamic library support
• Allow local classes as template parameters
• Move semantics
• nullptr - Null pointer constant
• Static assertions
• Concepts (a type system for types)
• Solve the forwarding problem
• Variable-length template parameter lists
• Simple compile-time reflection
• GUI support (e.g. slots and signals)
• Defaulting and inhibiting common operations
• Class namespaces
• long long
• >> (without a space) to terminate two template specializations
• …

Library TR

• Hash Tables
• Regular Expressions
• General Purpose Smart Pointers
• Extensible Random Number Facility
• Mathematical Special Functions

• Polymorphic Function Object Wrapper
• Tuple Types
• Type Traits
• Enhanced Member Pointer Adaptor
• Reference Wrapper
• Uniform Method for Computing Function Object Return Types
• Enhanced Binder

What’s out there? (Lots!)
Library building is the most fertile source of ideas

– Libraries
– Core language

• Boost.org – libraries loosely based on the standard libraries
• ACE – portable distributed systems programming platform
• Blitz++ – the original template-expression linear-algebra library
• SI – statically checked international units
• Loki – mixed bag of very clever utility stuff
• Endless GUIs and GUI toolkits

– GTK+/gtkmm, Qt, FOX Toolkit, eclipse, FLTK, wxWindows, …
• … much, much more …

see the C++ libraries FAQ
• Link on http://www.research.att.com/~bs/C++.html

What’s out there? Boost.org
• Filesystem Library – Portable paths, iteration over directories, etc
• MPL added – Template metaprogramming framework
• Spirit Library – LL parser framework
• Smart Pointers Library –
• Date-Time Library –
• Function Library – function objects
• Signals – signals & slots callbacks
• Graph library –
• Test Library –
• Regex Library – regular expressions
• Format Library added – Type-safe 'printf-like' format operations
• Multi-array Library added – Multidimensional containers and adaptors
• Python Library – reflects C++ classes and functions into Python
• uBLAS Library added – Basic linear algebra for dense, packed and sparse matrices
• Lambda Library – for_each(a.begin(), a.end(), std::cout << _1 << ' ');
• Random Number Library
• Threads Library
• …

Performance TR

• The aim of this report is:
– to give the reader a model of time and space overheads implied by

use of various C++ language and library features,
– to debunk widespread myths about performance problems,
– to present techniques for use of C++ in applications where

performance matters, and
– to present techniques for implementing C++ language and standard

library facilities to yield efficient code.
• Contents

– Language features: overheads and strategies
– Creating efficient libraries
– Using C++ in embedded systems
– Hardware addressing interface

	Direction for C++0x
	Abstract
	Overview
	ISO Standard C++
	Problems
	Problems
	The (real) problems
	C++ ISO Standardization
	Standardization – why bother?
	Why mess with a good thing?
	Overall Goals
	Rules of thumb / Ideals
	Stability and compatibility
	Libraries and language features
	Prefer generality to specialization
	Support novices
	Better (C++0x)
	Type safety
	Type safety
	Areas of language change
	C++98 example
	C++98 example
	C++0x version
	Will this happen?
	Generic programming:The language is straining
	What’s wrong?
	What’s right?
	
	C++0x proposalsrelated to generic programming
	Example
	Alternate (explicit predicate) notation
	Example
	Yet another example
	Defining concepts
	Using a type (obvious match of concept)
	Using a type (not so obvious match of concept)
	Explicit concept asserts
	Explicit concept asserts
	Core language suggestions (Lots!)
	Library TR
	What’s out there? (Lots!)
	What’s out there? Boost.org
	Performance TR

